Controlling single-molecule conductance through lateral coupling of [pi] orbitals : Nature Nanotechnology : Nature Publishing Group

نویسندگان

  • Ismael Diez-Perez
  • Joshua Hihath
  • Thomas Hines
  • Zhong-Sheng Wang
  • Gang Zhou
  • Klaus Müllen
  • Nongjian Tao
چکیده

Abstract In recent years, various single-molecule electronic components have been demonstrated1. However, it remains difficult to predict accurately the conductance of a single molecule and to control the lateral coupling between the π orbitals of the molecule and the orbitals of the electrodes attached to it. This lateral coupling is well known to cause broadening and shifting of the energy levels of the molecule; this, in turn, is expected to greatly modify the conductance of an electrode–molecule–electrode junction2, 3, 4, 5, 6. Here, we demonstrate a new method, based on lateral coupling, to mechanically and reversibly control the conductance of a single-molecule junction by mechanically modulating the angle between a single pentaphenylene molecule bridged between two metal electrodes. Changing the angle of the molecule from a highly tilted state to an orientation nearly perpendicular to the electrodes changes the conductance by an order of magnitude, which is in qualitative agreement with theoretical models of molecular π-orbital coupling to a metal electrode. The lateral coupling is also directly measured by applying a fast mechanical perturbation in the horizontal plane, thus ruling out changes in the contact geometry or molecular conformation as the source for the conductance change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular junctions based on aromatic coupling.

If individual molecules are to be used as building blocks for electronic devices, it will be essential to understand charge transport at the level of single molecules. Most existing experiments rely on the synthesis of functional rod-like molecules with chemical linker groups at both ends to provide strong, covalent anchoring to the source and drain contacts. This approach has proved very succe...

متن کامل

In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions.

Charge transport across metal-molecule interfaces has an important role in organic electronics. Typically, chemical link groups such as thiols or amines are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal-carbon coupling has been shown through C60,...

متن کامل

Electronic transport calculations for the conductance of Pt-1,4-phenylene diisocyanide-Pt molecular junctions.

The low-bias transport properties of a single 1,4-phenylene diisocyanide (PDI) molecule connected to two platinum (Pt) electrodes are investigated using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with density functional theory. Our calculations demonstrate that the zero-bias conductance of an asymmetric Pt-PDI-Pt junction, where the PDI mol...

متن کامل

محاسبه رسانندگی و زمان مشخصه تونل‌زنی الکترون از پیوندگاه فلز – مولکول (پلی استیلن) در یک سیم مولکولی

  In this paper, on the basis of tight-binding model and a generalized Green- function method as well as Lanczos algorithm procedure, the effects of the metal-molecule coupling(MMC) strength on the electronic transmission through a metal-single molecule-metal(MMM) system is investigated. Using the Landauer formalism we study some of the significant conductance properties of this system as a mol...

متن کامل

Probing the conductance superposition law in single-molecule circuits with parallel paths.

According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011